Pyblish Documentation
Release 1.2.1

Marcus Ottosson

October 27, 2015

Contents

1 Functions
2 Configuration
3 Library

4 Exceptions

4.1 AbstractEntity L
42 Context vt i e e e
43 Instance e e
44 Plugin. e
45 Selector
4.6 Validator
47 EBXtractoro e e e
4.8 Conformer
49 discover. e e
410 plugin_paths
4.11 registered_paths
412 configured_paths L L.
4.13 environment_paths
4.14 register_plugin_path

4.15 deregister_plugin_path

4.16 deregister_all
4.17 plugins_by_family
418 plugins_by_host
4.19 instances_by _plugin
420 Config e
421 1og . .o e
4.22 format_filename
423 PyblishError o
424 SelectionError
425 ValidationError
426 ExtractionError
427 ConformError

Python Module Index

...................... 15

Pyblish Documentation, Release 1.2.1

API documentation for Pyblish v1.2.1.
Central objects used throughout Pyblish.

AbstractEntity Superclass for Context and Instance

Context Maintain a collection of Instances

Instance An in-memory representation of one or more files

Plugin Base-class for plugins

Selector alias of Collector

Validator Validate/check/test individual instance for correctness.

Extractor Physically separate Instance from Host into corresponding resources
Conformer alias of Integrator

Contents 1

Pyblish Documentation, Release 1.2.1

2 Contents

CHAPTER 1

Functions

Helper utilities.

discover Find and return available plug-ins

plugin_paths Collect paths from all sources.

registered_paths Return paths added via registration

configured_paths Return paths added via configuration

environment_paths Return paths added via environment variable

register_plugin_path Plug-ins are looked up at run-time from directories registered here

deregister_plugin_path Remove a pyblish._registered_paths path
deregister_all

plugins_by_ family

plugins_by_host

instances_by_plugin

Pyblish Documentation, Release 1.2.1

4 Chapter 1. Functions

CHAPTER 2

Configuration

Config

Pyblish Documentation, Release 1.2.1

6 Chapter 2. Configuration

CHAPTER 3

Library

log Decorator for attaching a logger to the class cls
format_filename Convert arbitrary string to valid filename, django-style.

Pyblish Documentation, Release 1.2.1

8 Chapter 3. Library

CHAPTER 4

Exceptions

Exceptions raised that are specific to Pyblish.

PyblishError
SelectionError
ValidationError
ExtractionError
ConformError

Baseclass for all Pyblish exceptions
Baseclass for selection errors
Baseclass for validation errors
Baseclass for extraction errors
Baseclass for conforming errors

4.1 AbstractEntity

Superclass to Context and Instance, providing the data plug-in to plug-in API via the data member.

class pyblish.plugin.AbstractEntity
Superclass for Context and Instance

add (*args, **kwargs)
DEPRECATED - USE .append

Add member to self
This is to mimic the interface of set()

has_data (key)

DEPRECATED - USE .data DICTIONARY DIRECTLY

Check if entity has key

Parameters key (str) — Key to check

Returns True if it exists, False otherwise

remove (*args, **kwargs)
DEPRECATED - USE .pop

Remove member from self
This is to mimic the interface of set()

remove_data (key)

DEPRECATED - USE .data DICTIONARY DIRECTLY

Remove data from entity

Pyblish Documentation, Release 1.2.1

Arguments; key (str): Name of data to remove

set_data (key, value)
DEPRECATED - USE .data DICTIONARY DIRECTLY

Modify/insert data into entity
Parameters
* key (str) — Name of data to add

* value (object) — Value of data to add

4.2 Context

The context is a container of one or more objects of type Instance along with metadata to describe them all; such

as the current working directory or logged on user.

class pyblish.plugin.Context
Maintain a collection of Instances

__contains___ (key)
Support both Instance objects and id strings

Example
>>> context = Context ()
>>> instance = context.create_instance ("MyInstance")

>>> "MyInstance" in context
True
>>> instance in context

True
>>> "NotExists" in context
False

__getitem__ (item)

Enable support for dict-like getting of children by id

Example

>>> context = Context ()

>>> instance = context.create_instance ("MylInstance")

>>> assert context["MyInstance"].name == "MylInstance"

>>> assert context[0].name == "MyInstance"

>>> assert context.get ("MyInstance") .name == "MyInstance"

add (*args, **kwargs)
create_asset (*args, **kwargs)

create_instance (name, **kwargs)
Convenience method of the following.

>>> ctx = Context ()
>>> inst = Instance ("name", parent=ctx)

10

Chapter 4.

Exceptions

Pyblish Documentation, Release 1.2.1

Example
>>> ctx = Context ()
>>> inst = ctx.create_instance (name="Name")

get (key, default=None)
id

4.3 Instance

An instance describes one or more items in a working scene; you can think of it as the counter-part of a file on disk -
once the file has been loaded, it’s an instance.

class pyblish.plugin.Instance (name, parent=None)
An in-memory representation of one or more files

Examples include rigs, models.
Parameters
* name (str) — Name of instance, typically used during extraction as name of resulting files.

» parent (AbstractEntity) — Optional parent. This is supplied automatically when creating
instances with Context .create_instance ().

id

str — Unique identifier of instance
name

str — Name of instance
parent

AbstractEntity — Optional parent of instance

context
Return top-level parent; the context

id
log = <logging.Logger object at 0x7f0820771210>

4.4 Plugin

As a plug-in driven framework, any action is implemented as a plug-in and this is the superclass from which
all plug-ins are derived. The superclass defines behaviour common across all plug-ins, such as its inter-
nally executed method Plugin.process () or it’s virtual members Plugin.process_instance () and
Plugin.process_context ().

Each plug-in MAY define one or more of the following attributes prior to being useful to Pyblish.
e Plugin.hosts
* Plugin.optional
* Plugin.version

Some of which are MANDATORY, others which are OPTIONAL. See each corresponding subclass for details.

4.3. Instance 11

Pyblish Documentation, Release 1.2.1

Selector
Validator
Extractor

Conformer

class pyblish.plugin.Plugin

Base-class for plugins

hosts
Optionally limit a plug-in to one or more hosts

families
Optionally limit a plug-in to one or more families

label
Printed name of plug-in

active
Whether or not to use plug-in during processing

version
Optional version for forwards-compatibility. Pyblish is (currently not) using the version to allow for plug-
ins incompatible with a particular running instance of Pyblish to co-exist alongside compatible versions.

order
Order in which this plug-in is processed. This is used internally to control which plug-ins are processed
before another so as to allow plug-ins to communicate with each other. E.g. one plug-in may provide
critical information to another and so must be allowed to be processed first.

optional
Whether or not plug-in can be skipped by the user.

requires
Which version of Pyblish is required by this plug-in. Plug-ins requiring a version newer than the current
version will not be loaded. 1.0.8 was when P1lugin.requires was first introduced.

actions
Actions associated to this plug-in

actions =[]

active = True

families =["*’]

hosts =["*’]

id = ‘Plugin’

label = None

log = <logging.Logger object at 0x7f0820764a50>
optional = False

order =-1

process ()
Primary processing method

This method is called whenever your plug-in is invoked and is injected with object relative to it’s signature.

E.g. process(self, context, instance) will have the current context and instance injected into it at run-time.

12

Chapter 4. Exceptions

Pyblish Documentation, Release 1.2.1

Available objects:
* context
* instance
* user

* time
Raises Any error

repair ()
DEPRECATED

requires = ‘pyblish>=1’

version=(0,0,0)

4.5 Selector

A selector finds instances within a working file.

Note: The following attributes must be present when implementing this plug-in.

* Selector.hosts

e Selector.version

pyblish.plugin.Selector
alias of Collector

4.6 Validator

A validator validates selected instances.

Note: The following attributes must be present when implementing this plug-in.

* Plugin.hosts
* Plugin.version

e Validator.families

class pyblish.plugin.Validator
Validate/check/test individual instance for correctness.

log = <logging.Logger object at 0x7f0820764c90>

order=1

4.5. Selector

13

Pyblish Documentation, Release 1.2.1

4.7 Extractor

Extractors are responsible for serialising selected data into a format suited for persistence on disk. Keep in mind that
although an extractor does place file on disk, it isn’t responsible for the final destination of files. See Conformer for
more information.

Note: The following attributes must be present when implementing this plug-in.

* Plugin.hosts
* Plugin.version

e Extractor.families

class pyblish.plugin.Extractor
Physically separate Instance from Host into corresponding resources

log = <logging.Logger object at 0x7f0820764d10>

order =2

4.8 Conformer

The conformer, also known as infegrator, integrates data produced by extraction.
Its responsibilities include:

1. Placing files into their final destination

2. To manage and increment versions, typically involving a third-party versioning library.
3. To notify artists of events
4

. To provide hooks for out-of-band processes

Note: The following attributes must be present when implementing this plug-in.

* Plugin.hosts
* Plugin.version

e Conformer.families

pyblish.plugin.Conformer
alias of Integrator

4.9 discover

pyblish.plugin.discover (fype=None, regex=None, paths=None)
Find and return available plug-ins

This function looks for files within paths registered via register_plugin_path () and those added to
PYBLISHPLUGINPATH.

It determines fype - Selector, Validator, Extractor or Conform - based on whether it matches it’s
corresponding regular expression; e.g. “$validator_*"" for plug-ins of type Validator.

Parameters

14 Chapter 4. Exceptions

Pyblish Documentation, Release 1.2.1

* type (str; optional) — \DEPRECATED! Only return plugins of specified type. E.g. valida-
tors, extractors. In None is specified, return all plugins. Available options are “selectors”,

EEINNT3 9%

validators”, “extractors”,

9

conformers”, “collectors” and “integrators”.

* regex (str, optional) — Limit results to those matching regex. Matching is done on classes,
as opposed to filenames, due to a file possibly hosting multiple plugins.

* paths (list, optional) — Paths to discover plug-ins from. If no paths are provided, all paths
are searched.

4.10 plugin_paths

pyblish.plugin.plugin_paths ()
Collect paths from all sources.

This function looks at the three potential sources of paths and returns a list with all of them together.
The sources are:

*Registered paths using register_plugin_path (),

*Paths from the environment variable PYBLISHPLUGINPATH

*Paths from configuration

Returns list of paths in which plugins may be locat

4.11 registered_paths
pyblish.plugin.registered paths ()

Return paths added via registration

..note:: This returns a copy of the registered paths and can therefore not be modified directly.

4.12 configured_paths

pyblish.plugin.configured paths ()
Return paths added via configuration

4.13 environment_paths

pyblish.plugin.environment_paths ()
Return paths added via environment variable

4.14 register_plugin_path

pyblish.plugin.register_plugin_path (path)
Plug-ins are looked up at run-time from directories registered here

To register a new directory, run this command along with the absolute path to where youre plug-ins are located.

4.10. plugin_paths 15

Pyblish Documentation, Release 1.2.1

Example

>>> import os

>>> my_plugins = "/server/plugins"
>>> register_plugin_path (my_plugins)
'/server/plugins'

Returns Actual path added, including any post-processing

4.15 deregister_plugin_path

pyblish.plugin.deregister plugin_path (path)

Remove a pyblish._registered_paths path

Raises KeyError if path isn’t registered

4.16 deregister_all

4.17 plugins_by family
4.18 plugins_by host
4.19 instances_by_ plugin
4.20 Config

4.21 log

pyblish.lib.log (cls)
Decorator for attaching a logger to the class cls

Loggers inherit the syntax {module}.{submodule}

Example
>>> @log
. class MyClass (object) :
pass
>>>
>>> myclass = MyClass ()

>>> myclass.log.info('Hello World")

4.22 format_filename

pyblish.lib.format_filename (filename)

Convert arbitrary string to valid filename, django-style.

16

Chapter 4. Exceptions

Pyblish Documentation, Release 1.2.1

Modified from django.utils.text.get_valid_filename()

Returns the given string converted to a string that can be used for a clean filename. Specifically, leading and
trailing spaces are removed; other spaces are converted to underscores; and anything that is not a unicode
alphanumeric, dash, underscore, or dot, is removed.

Usage:

>>> format_filename ("john's portrait in 2004.Jpg")
'johns_portrait_in_2004. jpg’

>>> format_filename ("something”_SD.dda.//fd/ad.exe™)
'something_SD.dda.fdad.exe'

>>> format_filename ("Napoleon_:namespaces_GRP|groupl_GRP")
'Napoleon_namespaces_GRPgroupl_GRP'

4.23 PyblishError

class pyblish.error.PyblishError
Baseclass for all Pyblish exceptions

4.24 SelectionError

class pyblish.error.SelectionError
Baseclass for selection errors

4.25 ValidationError

class pyblish.error.ValidationError
Baseclass for validation errors

4.26 ExtractionError

class pyblish.error.ExtractionError
Baseclass for extraction errors

4.27 ConformError

class pyblish.error.ConformError
Baseclass for conforming errors

4.23. PyblishError 17

Pyblish Documentation, Release 1.2.1

18 Chapter 4. Exceptions

Python Module Index

Y

pyblish, 16
pyblish.error, 17
pyblish.1lib, 16
pyblish.plugin,9

19

Pyblish Documentation, Release 1.2.1

20

Python Module Index

Index

Symbols

__contains__() (pyblish.plugin.Context method), 10
__getitem__ () (pyblish.plugin.Context method), 10

A

AbstractEntity (class in pyblish.plugin), 9
actions (pyblish.plugin.Plugin attribute), 12
active (pyblish.plugin.Plugin attribute), 12
add() (pyblish.plugin. AbstractEntity method), 9
add() (pyblish.plugin.Context method), 10

C

configured_paths() (in module pyblish.plugin), 15
Conformer (in module pyblish.plugin), 14
ConformError (class in pyblish.error), 17

Context (class in pyblish.plugin), 10

context (pyblish.plugin.Instance attribute), 11
create_asset() (pyblish.plugin.Context method), 10
create_instance() (pyblish.plugin.Context method), 10

D

deregister_plugin_path() (in module pyblish.plugin), 16
discover() (in module pyblish.plugin), 14

E

environment_paths() (in module pyblish.plugin), 15
ExtractionError (class in pyblish.error), 17
Extractor (class in pyblish.plugin), 14

F

families (pyblish.plugin.Plugin attribute), 12
format_filename() (in module pyblish.lib), 16

G

get() (pyblish.plugin.Context method), 11

H

has_data() (pyblish.plugin. AbstractEntity method), 9
hosts (pyblish.plugin.Plugin attribute), 12

id (pyblish.plugin.Context attribute), 11
id (pyblish.plugin.Instance attribute), 11
id (pyblish.plugin.Plugin attribute), 12
Instance (class in pyblish.plugin), 11

L

label (pyblish.plugin.Plugin attribute), 12
log (pyblish.plugin.Extractor attribute), 14
log (pyblish.plugin.Instance attribute), 11
log (pyblish.plugin.Plugin attribute), 12
log (pyblish.plugin.Validator attribute), 13
log() (in module pyblish.lib), 16

N

name (pyblish.plugin.Instance attribute), 11

O

optional (pyblish.plugin.Plugin attribute), 12
order (pyblish.plugin.Extractor attribute), 14
order (pyblish.plugin.Plugin attribute), 12

order (pyblish.plugin.Validator attribute), 13

P

parent (pyblish.plugin.Instance attribute), 11
Plugin (class in pyblish.plugin), 12
plugin_paths() (in module pyblish.plugin), 15
process() (pyblish.plugin.Plugin method), 12
pyblish (module), 3, 16

pyblish.error (module), 7, 17

pyblish.lib (module), 5, 16

pyblish.plugin (module), 1, 9

PyblishError (class in pyblish.error), 17

R

register_plugin_path() (in module pyblish.plugin), 15
registered_paths() (in module pyblish.plugin), 15
remove() (pyblish.plugin.AbstractEntity method), 9
remove_data() (pyblish.plugin.AbstractEntity method), 9
repair() (pyblish.plugin.Plugin method), 13

21

Pyblish Documentation, Release 1.2.1

requires (pyblish.plugin.Plugin attribute), 12, 13

S

SelectionError (class in pyblish.error), 17
Selector (in module pyblish.plugin), 13
set_data() (pyblish.plugin.AbstractEntity method), 10

\Y

ValidationError (class in pyblish.error), 17
Validator (class in pyblish.plugin), 13
version (pyblish.plugin.Plugin attribute), 12, 13

22 Index

	Functions
	Configuration
	Library
	Exceptions
	AbstractEntity
	Context
	Instance
	Plugin
	Selector
	Validator
	Extractor
	Conformer
	discover
	plugin_paths
	registered_paths
	configured_paths
	environment_paths
	register_plugin_path
	deregister_plugin_path
	deregister_all
	plugins_by_family
	plugins_by_host
	instances_by_plugin
	Config
	log
	format_filename
	PyblishError
	SelectionError
	ValidationError
	ExtractionError
	ConformError

	Python Module Index

